Paleoseismological evidence of surface faulting along the northeastern Himalayan front, India: Timing, size, and spatial extent of great earthquakes

نویسندگان

  • Senthil Kumar
  • Steven G. Wesnousky
  • R. Jayangondaperumal
  • T. Nakata
  • Y. Kumahara
  • Vimal Singh
چکیده

[1] The ∼2500 km long Himalayan arc has experienced three large to great earthquakes of Mw 7.8 to 8.4 during the past century, but none produced surface rupture. Paleoseismic studies have been conducted during the last decade to begin understanding the timing, size, rupture extent, return period, and mechanics of the faulting associated with the occurrence of large surface rupturing earthquakes along the ∼2500 km long Himalayan Frontal Thrust (HFT) system of India and Nepal. The previous studies have been limited to about nine sites along the western two‐thirds of the HFT extending through northwest India and along the southern border of Nepal. We present here the results of paleoseismic investigations at three additional sites further to the northeast along the HFT within the Indian states of West Bengal and Assam. The three sites reside between the meizoseismal areas of the 1934 Bihar‐Nepal and 1950 Assam earthquakes. The two westernmost of the sites, near the village of Chalsa and near the Nameri Tiger Preserve, show that offsets during the last surface rupture event were at minimum of about 14 m and 12 m, respectively. Limits on the ages of surface rupture at Chalsa (site A) and Nameri (site B), though broad, allow the possibility that the two sites record the same great historical rupture reported in Nepal around A.D. 1100. The correlation between the two sites is supported by the observation that the large displacements as recorded at Chalsa and Nameri would most likely be associated with rupture lengths of hundreds of kilometers or more and are on the same order as reported for a surface rupture earthquake reported in Nepal around A.D. 1100. Assuming the offsets observed at Chalsa and Nameri occurred synchronously with reported offsets in Nepal, the rupture length of the event would approach 700 to 800 km. The easternmost site is located within Harmutty Tea Estate (site C) at the edges of the 1950 Assam earthquake meizoseismal area. Here the most recent event offset is relatively much smaller (<2.5 m), and radiocarbon dating shows it to have occurred after A.D. 1100 (after about A.D. 1270). The location of the site near the edge of the meizoseismal region of the 1950 Assam earthquake and the relatively lesser offset allows speculation that the displacement records the 1950 Mw 8.4 Assam earthquake. Scatter in radiocarbon ages on detrital charcoal has not resulted in a firm bracket on the timing of events observed in the trenches. Nonetheless, the observations collected here, when taken together, suggest that the largest of thrust earthquakes along the Himalayan arc have rupture lengths and displacements of similar scale to the largest that have occurred historically along the world’s subduction zones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrent seismicity in Rajasthan State in the tectonically stable NW Indian Craton

Indian peninsular region comprises several Archean cratonic blocks (Dharwar, Bastar, Singhbhum, Aravalli – Bundelkhand), bordered by Proterozoic mobile belts. Therefore, this region is considered as tectonically stable and designated as the least vulnerable region to earthquake hazard except the still active Central Indian Tectonic Zone (CITZ). The latter is a major suture between southern and ...

متن کامل

Entertaining a Great Earthquake in Western Nepal: Historic Inactivity and Geodetic Tests for the Present State of Strain

A 500-800 km long segment of the Himalaya bordered by the rupture zones of the great Bihar, 1934, and Kangra, 1905, earthquakes has not experienced a great earthquake for at least 200 years, and perhaps for as long as 750 years. The rate of occurrence of earthquakes is evidently too low to accomodate Indo/Tibetan slip which must therefore be accomodated by creep or occasional great earthquakes....

متن کامل

Evidence for a great medieval earthquake (~1100 A.D.) in the central Himalayas, Nepal.

The Himalayan orogen has produced three thrust earthquakes with moment magnitude (Mw) 7.8 to 8.5 during the past century, yet no surface ruptures associated with these great earthquakes have been documented. Here, we present paleoseismic evidence from east central Nepal that, since approximately 700 A.D., a single earthquake ruptured the Frontal Thrust fault at approximately 1100 A.D., with a s...

متن کامل

Quaternary tectonic faulting in the Eastern United States

Paleoseismological study of geologic features thought to result from Quaternary tectonic faulting can characterize the frequencies and sizes of large prehistoric and historical earthquakes, thereby improving the accuracy and precision of seismichazard assessments. Greater accuracy and precision can reduce the likelihood of both underprotection and unnecessary design and construction costs. Publ...

متن کامل

The Sanriku-Oki low-seismicity region on the northern margin of the great 2011 Tohoku-Oki earthquake rupture

[1] We examine a region of the megathrust fault offshore of northeastern Honshu (38.75°–40.25°N, 141.5°–143.25°E) that we designate as the Sanriku-Oki low-seismicity region (SLSR). The SLSR, located near the northern termination of the 2011 Tohoku-Oki (Mw 9.0) rupture, lacks historical great earthquake ruptures and has relatively low levels of moderate-size (Mj ≥ 5.0) earthquakes, with subregio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010